Django has full support for internationalization of text in code and templates. Here’s how it works.
The goal of internationalization is to allow a single Web application to offer its content and functionality in multiple languages.
You, the Django developer, can accomplish this goal by adding a minimal amount of hooks to your Python code and templates. These hooks are called translation strings. They tell Django: “This text should be translated into the end user’s language, if a translation for this text is available in that language.”
Django takes care of using these hooks to translate Web apps, on the fly, according to users’ language preferences.
Essentially, Django does two things:
Django’s internationalization hooks are on by default, and that means there’s a bit of i18n-related overhead in certain places of the framework. If you don’t use internationalization, you should take the two seconds to set USE_I18N = False in your settings file. If USE_I18N is set to False, then Django will make some optimizations so as not to load the internationalization machinery.
You’ll probably also want to remove 'django.core.context_processors.i18n' from your TEMPLATE_CONTEXT_PROCESSORS setting.
Behind the scenes
Django’s translation machinery uses the standard gettext module that comes with Python.
Translation strings specify “This text should be translated.” These strings can appear in your Python code and templates. It’s your responsibility to mark translatable strings; the system can only translate strings it knows about.
Specify a translation string by using the function ugettext(). It’s convention to import this as a shorter alias, _, to save typing.
Note
Python’s standard library gettext module installs _() into the global namespace, as an alias for gettext(). In Django, we have chosen not to follow this practice, for a couple of reasons:
In this example, the text "Welcome to my site." is marked as a translation string:
from django.utils.translation import ugettext as _
def my_view(request):
output = _("Welcome to my site.")
return HttpResponse(output)
Obviously, you could code this without using the alias. This example is identical to the previous one:
from django.utils.translation import ugettext
def my_view(request):
output = ugettext("Welcome to my site.")
return HttpResponse(output)
Translation works on computed values. This example is identical to the previous two:
def my_view(request):
words = ['Welcome', 'to', 'my', 'site.']
output = _(' '.join(words))
return HttpResponse(output)
Translation works on variables. Again, here's an identical example:
def my_view(request):
sentence = 'Welcome to my site.'
output = _(sentence)
return HttpResponse(output)
(The caveat with using variables or computed values, as in the previous two examples, is that Django's translation-string-detecting utility, django-admin.py makemessages, won't be able to find these strings. More on makemessages later.)
The strings you pass to _() or ugettext() can take placeholders, specified with Python's standard named-string interpolation syntax. Example:
def my_view(request, m, d):
output = _('Today is %(month)s, %(day)s.') % {'month': m, 'day': d}
return HttpResponse(output)
This technique lets language-specific translations reorder the placeholder text. For example, an English translation may be "Today is November, 26.", while a Spanish translation may be "Hoy es 26 de Noviembre." -- with the placeholders (the month and the day) with their positions swapped.
For this reason, you should use named-string interpolation (e.g., %(day)s) instead of positional interpolation (e.g., %s or %d) whenever you have more than a single parameter. If you used positional interpolation, translations wouldn't be able to reorder placeholder text.
Use the function django.utils.translation.ugettext_noop() to mark a string as a translation string without translating it. The string is later translated from a variable.
Use this if you have constant strings that should be stored in the source language because they are exchanged over systems or users -- such as strings in a database -- but should be translated at the last possible point in time, such as when the string is presented to the user.
Use the function django.utils.translation.ugettext_lazy() to translate strings lazily -- when the value is accessed rather than when the ugettext_lazy() function is called.
For example, to translate a model's help_text, do the following:
from django.utils.translation import ugettext_lazy
class MyThing(models.Model):
name = models.CharField(help_text=ugettext_lazy('This is the help text'))
In this example, ugettext_lazy() stores a lazy reference to the string -- not the actual translation. The translation itself will be done when the string is used in a string context, such as template rendering on the Django admin site.
The result of a ugettext_lazy() call can be used wherever you would use a unicode string (an object with type unicode) in Python. If you try to use it where a bytestring (a str object) is expected, things will not work as expected, since a ugettext_lazy() object doesn't know how to convert itself to a bytestring. You can't use a unicode string inside a bytestring, either, so this is consistent with normal Python behavior. For example:
# This is fine: putting a unicode proxy into a unicode string.
u"Hello %s" % ugettext_lazy("people")
# This will not work, since you cannot insert a unicode object
# into a bytestring (nor can you insert our unicode proxy there)
"Hello %s" % ugettext_lazy("people")
If you ever see output that looks like "hello <django.utils.functional...>", you have tried to insert the result of ugettext_lazy() into a bytestring. That's a bug in your code.
If you don't like the verbose name ugettext_lazy, you can just alias it as _ (underscore), like so:
from django.utils.translation import ugettext_lazy as _
class MyThing(models.Model):
name = models.CharField(help_text=_('This is the help text'))
Always use lazy translations in Django models. Field names and table names should be marked for translation (otherwise, they won't be translated in the admin interface). This means writing explicit verbose_name and verbose_name_plural options in the Meta class, though, rather than relying on Django's default determination of verbose_name and verbose_name_plural by looking at the model's class name:
from django.utils.translation import ugettext_lazy as _
class MyThing(models.Model):
name = models.CharField(_('name'), help_text=_('This is the help text'))
class Meta:
verbose_name = _('my thing')
verbose_name_plural = _('mythings')
Use the function django.utils.translation.ungettext() to specify pluralized messages.
ungettext takes three arguments: the singular translation string, the plural translation string and the number of objects.
This function is useful when your need you Django application to be localizable to languages where the number and complexity of plural forms is greater than the two forms used in English ('object' for the singular and 'objects' for all the cases where count is different from zero, irrespective of its value.)
For example:
from django.utils.translation import ungettext
def hello_world(request, count):
page = ungettext('there is %(count)d object', 'there are %(count)d objects', count) % {
'count': count,
}
return HttpResponse(page)
In this example the number of objects is passed to the translation languages as the count variable.
Lets see a slightly more complex usage example:
from django.utils.translation import ungettext
count = Report.objects.count()
if count == 1:
name = Report._meta.verbose_name
else:
name = Report._meta.verbose_name_plural
text = ungettext(
'There is %(count)d %(name)s available.',
'There are %(count)d %(name)s available.',
count
) % {
'count': count,
'name': name
}
Here we reuse localizable, hopefully already translated literals (contained in the verbose_name and verbose_name_plural model Meta options) for other parts of the sentence so all of it is consistently based on the cardinality of the elements at play.
Note
When using this technique, make sure you use a single name for every extrapolated variable included in the literal. In the example above note how we used the name Python variable in both translation strings. This example would fail:
from django.utils.translation import ungettext
from myapp.models import Report
count = Report.objects.count()
d = {
'count': count,
'name': Report._meta.verbose_name
'plural_name': Report._meta.verbose_name_plural
}
text = ungettext(
'There is %(count)d %(name)s available.',
'There are %(count)d %(plural_name)s available.',
count
) % d
You would get a a format specification for argument 'name', as in 'msgstr[0]', doesn't exist in 'msgid' error when running django-admin.py compilemessages or a KeyError Python exception at runtime.
Translations in Django templates uses two template tags and a slightly different syntax than in Python code. To give your template access to these tags, put {% load i18n %} toward the top of your template.
The {% trans %} template tag translates either a constant string (enclosed in single or double quotes) or variable content:
<title>{% trans "This is the title." %}</title>
<title>{% trans myvar %}</title>
If the noop option is present, variable lookup still takes place, but the original text will be returned unchanged. This is useful when "stubbing out" content that will require translation in the future:
<title>{% trans "myvar" noop %}</title>
Internally, inline translations use an ugettext call.
It's not possible to mix a template variable inside a string within {% trans %}. If your translations require strings with variables (placeholders), use {% blocktrans %}:
{% blocktrans %}This string will have {{ value }} inside.{% endblocktrans %}
To translate a template expression -- say, using template filters -- you need to bind the expression to a local variable for use within the translation block:
{% blocktrans with value|filter as myvar %}
This will have {{ myvar }} inside.
{% endblocktrans %}
If you need to bind more than one expression inside a blocktrans tag, separate the pieces with and:
{% blocktrans with book|title as book_t and author|title as author_t %}
This is {{ book_t }} by {{ author_t }}
{% endblocktrans %}
To pluralize, specify both the singular and plural forms with the {% plural %} tag, which appears within {% blocktrans %} and {% endblocktrans %}. Example:
{% blocktrans count list|length as counter %}
There is only one {{ name }} object.
{% plural %}
There are {{ counter }} {{ name }} objects.
{% endblocktrans %}
When you use the pluralization feature and bind additional values to local variables apart from the counter value that selects the translated literal to be used, have in mind that the blocktrans construct is internally converted to an ungettext call. This means the same notes regarding ungettext variables apply.
Each RequestContext has access to three translation-specific variables:
If you don't use the RequestContext extension, you can get those values with three tags:
{% get_current_language as LANGUAGE_CODE %}
{% get_available_languages as LANGUAGES %}
{% get_current_language_bidi as LANGUAGE_BIDI %}
These tags also require a {% load i18n %}.
Translation hooks are also available within any template block tag that accepts constant strings. In those cases, just use _() syntax to specify a translation string:
{% some_special_tag _("Page not found") value|yesno:_("yes,no") %}
In this case, both the tag and the filter will see the already-translated string, so they don't need to be aware of translations.
Note
In this example, the translation infrastructure will be passed the string "yes,no", not the individual strings "yes" and "no". The translated string will need to contain the comma so that the filter parsing code knows how to split up the arguments. For example, a German translator might translate the string "yes,no" as "ja,nein" (keeping the comma intact).
Using ugettext_lazy() and ungettext_lazy() to mark strings in models and utility functions is a common operation. When you're working with these objects elsewhere in your code, you should ensure that you don't accidentally convert them to strings, because they should be converted as late as possible (so that the correct locale is in effect). This necessitates the use of a couple of helper functions.
Standard Python string joins (''.join([...])) will not work on lists containing lazy translation objects. Instead, you can use django.utils.translation.string_concat(), which creates a lazy object that concatenates its contents and converts them to strings only when the result is included in a string. For example:
from django.utils.translation import string_concat
...
name = ugettext_lazy(u'John Lennon')
instrument = ugettext_lazy(u'guitar')
result = string_concat([name, ': ', instrument])
In this case, the lazy translations in result will only be converted to strings when result itself is used in a string (usually at template rendering time).
Django offers many utility functions (particularly in django.utils) that take a string as their first argument and do something to that string. These functions are used by template filters as well as directly in other code.
If you write your own similar functions and deal with translations, you'll face the problem of what to do when the first argument is a lazy translation object. You don't want to convert it to a string immediately, because you might be using this function outside of a view (and hence the current thread's locale setting will not be correct).
For cases like this, use the django.utils.functional.allow_lazy() decorator. It modifies the function so that if it's called with a lazy translation as the first argument, the function evaluation is delayed until it needs to be converted to a string.
For example:
from django.utils.functional import allow_lazy
def fancy_utility_function(s, ...):
# Do some conversion on string 's'
...
fancy_utility_function = allow_lazy(fancy_utility_function, unicode)
The allow_lazy() decorator takes, in addition to the function to decorate, a number of extra arguments (*args) specifying the type(s) that the original function can return. Usually, it's enough to include unicode here and ensure that your function returns only Unicode strings.
Using this decorator means you can write your function and assume that the input is a proper string, then add support for lazy translation objects at the end.
Once you've tagged your strings for later translation, you need to write (or obtain) the language translations themselves. Here's how that works.
Locale restrictions
Django does not support localizing your application into a locale for which Django itself has not been translated. In this case, it will ignore your translation files. If you were to try this and Django supported it, you would inevitably see a mixture of translated strings (from your application) and English strings (from Django itself). If you want to support a locale for your application that is not already part of Django, you'll need to make at least a minimal translation of the Django core. See the relevant LocaleMiddleware note for more details.
The first step is to create a message file for a new language. A message file is a plain-text file, representing a single language, that contains all available translation strings and how they should be represented in the given language. Message files have a .po file extension.
Django comes with a tool, django-admin.py makemessages, that automates the creation and upkeep of these files.
A note to Django veterans
The old tool bin/make-messages.py has been moved to the command django-admin.py makemessages to provide consistency throughout Django.
To create or update a message file, run this command:
django-admin.py makemessages -l de
...where de is the language code for the message file you want to create. The language code, in this case, is in locale format. For example, it's pt_BR for Brazilian Portuguese and de_AT for Austrian German.
The script should be run from one of three places:
The script runs over your project source tree or your application source tree and pulls out all strings marked for translation. It creates (or updates) a message file in the directory locale/LANG/LC_MESSAGES. In the de example, the file will be locale/de/LC_MESSAGES/django.po.
By default django-admin.py makemessages examines every file that has the .html file extension. In case you want to override that default, use the --extension or -e option to specify the file extensions to examine:
django-admin.py makemessages -l de -e txt
Separate multiple extensions with commas and/or use -e or --extension multiple times:
django-admin.py makemessages -l=de -e=html,txt -e xml
When creating JavaScript translation catalogs you need to use the special 'djangojs' domain, not -e js.
No gettext?
If you don't have the gettext utilities installed, django-admin.py makemessages will create empty files. If that's the case, either install the gettext utilities or just copy the English message file (locale/en/LC_MESSAGES/django.po) if available and use it as a starting point; it's just an empty translation file.
Working on Windows?
If you're using Windows and need to install the GNU gettext utilities so django-admin makemessages works see gettext on Windows for more information.
The format of .po files is straightforward. Each .po file contains a small bit of metadata, such as the translation maintainer's contact information, but the bulk of the file is a list of messages -- simple mappings between translation strings and the actual translated text for the particular language.
For example, if your Django app contained a translation string for the text "Welcome to my site.", like so:
_("Welcome to my site.")
...then django-admin.py makemessages will have created a .po file containing the following snippet -- a message:
#: path/to/python/module.py:23
msgid "Welcome to my site."
msgstr ""
A quick explanation:
Long messages are a special case. There, the first string directly after the msgstr (or msgid) is an empty string. Then the content itself will be written over the next few lines as one string per line. Those strings are directly concatenated. Don't forget trailing spaces within the strings; otherwise, they'll be tacked together without whitespace!
Mind your charset
When creating a PO file with your favorite text editor, first edit the charset line (search for "CHARSET") and set it to the charset you'll be using to edit the content. Due to the way the gettext tools work internally and because we want to allow non-ASCII source strings in Django's core and your applications, you must use UTF-8 as the encoding for your PO file. This means that everybody will be using the same encoding, which is important when Django processes the PO files.
To reexamine all source code and templates for new translation strings and update all message files for all languages, run this:
django-admin.py makemessages -a
After you create your message file -- and each time you make changes to it -- you'll need to compile it into a more efficient form, for use by gettext. Do this with the django-admin.py compilemessages utility.
This tool runs over all available .po files and creates .mo files, which are binary files optimized for use by gettext. In the same directory from which you ran django-admin.py makemessages, run django-admin.py compilemessages like this:
django-admin.py compilemessages
That's it. Your translations are ready for use.
A note to Django veterans
The old tool bin/compile-messages.py has been moved to the command django-admin.py compilemessages to provide consistency throughout Django.
Working on Windows?
If you're using Windows and need to install the GNU gettext utilities so django-admin compilemessages works see gettext on Windows for more information.
Once you've prepared your translations -- or, if you just want to use the translations that come with Django -- you'll just need to activate translation for your app.
Behind the scenes, Django has a very flexible model of deciding which language should be used -- installation-wide, for a particular user, or both.
To set an installation-wide language preference, set LANGUAGE_CODE. Django uses this language as the default translation -- the final attempt if no other translator finds a translation.
If all you want to do is run Django with your native language, and a language file is available for your language, all you need to do is set LANGUAGE_CODE.
If you want to let each individual user specify which language he or she prefers, use LocaleMiddleware. LocaleMiddleware enables language selection based on data from the request. It customizes content for each user.
To use LocaleMiddleware, add 'django.middleware.locale.LocaleMiddleware' to your MIDDLEWARE_CLASSES setting. Because middleware order matters, you should follow these guidelines:
For example, your MIDDLEWARE_CLASSES might look like this:
MIDDLEWARE_CLASSES = (
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.locale.LocaleMiddleware',
'django.middleware.common.CommonMiddleware',
)
(For more on middleware, see the middleware documentation.)
LocaleMiddleware tries to determine the user's language preference by following this algorithm:
First, it looks for a django_language key in the current user's session.
Failing that, it looks for a cookie.
In Django version 0.96 and before, the cookie's name is hard-coded to django_language. In Django 1,0, The cookie name is set by the LANGUAGE_COOKIE_NAME setting. (The default name is django_language.)
Failing that, it looks at the Accept-Language HTTP header. This header is sent by your browser and tells the server which language(s) you prefer, in order by priority. Django tries each language in the header until it finds one with available translations.
Failing that, it uses the global LANGUAGE_CODE setting.
Notes:
In each of these places, the language preference is expected to be in the standard language format, as a string. For example, Brazilian Portuguese is pt-br.
If a base language is available but the sublanguage specified is not, Django uses the base language. For example, if a user specifies de-at (Austrian German) but Django only has de available, Django uses de.
Only languages listed in the LANGUAGES setting can be selected. If you want to restrict the language selection to a subset of provided languages (because your application doesn't provide all those languages), set LANGUAGES to a list of languages. For example:
LANGUAGES = (
('de', _('German')),
('en', _('English')),
)
This example restricts languages that are available for automatic selection to German and English (and any sublanguage, like de-ch or en-us).
If you define a custom LANGUAGES setting, as explained in the previous bullet, it's OK to mark the languages as translation strings -- but use a "dummy" ugettext() function, not the one in django.utils.translation. You should never import django.utils.translation from within your settings file, because that module in itself depends on the settings, and that would cause a circular import.
The solution is to use a "dummy" ugettext() function. Here's a sample settings file:
ugettext = lambda s: s
LANGUAGES = (
('de', ugettext('German')),
('en', ugettext('English')),
)
With this arrangement, django-admin.py makemessages will still find and mark these strings for translation, but the translation won't happen at runtime -- so you'll have to remember to wrap the languages in the real ugettext() in any code that uses LANGUAGES at runtime.
The LocaleMiddleware can only select languages for which there is a Django-provided base translation. If you want to provide translations for your application that aren't already in the set of translations in Django's source tree, you'll want to provide at least basic translations for that language. For example, Django uses technical message IDs to translate date formats and time formats -- so you will need at least those translations for the system to work correctly.
A good starting point is to copy the English .po file and to translate at least the technical messages -- maybe the validation messages, too.
Technical message IDs are easily recognized; they're all upper case. You don't translate the message ID as with other messages, you provide the correct local variant on the provided English value. For example, with DATETIME_FORMAT (or DATE_FORMAT or TIME_FORMAT), this would be the format string that you want to use in your language. The format is identical to the format strings used by the now template tag.
Once LocaleMiddleware determines the user's preference, it makes this preference available as request.LANGUAGE_CODE for each HttpRequest. Feel free to read this value in your view code. Here's a simple example:
def hello_world(request, count):
if request.LANGUAGE_CODE == 'de-at':
return HttpResponse("You prefer to read Austrian German.")
else:
return HttpResponse("You prefer to read another language.")
Note that, with static (middleware-less) translation, the language is in settings.LANGUAGE_CODE, while with dynamic (middleware) translation, it's in request.LANGUAGE_CODE.
Django looks for translations by following this algorithm:
This way, you can write applications that include their own translations, and you can override base translations in your project path. Or, you can just build a big project out of several apps and put all translations into one big project message file. The choice is yours.
Note
If you're using manually configured settings, as described Using settings without setting DJANGO_SETTINGS_MODULE, the locale directory in the project directory will not be examined, since Django loses the ability to work out the location of the project directory. (Django normally uses the location of the settings file to determine this, and a settings file doesn't exist if you're manually configuring your settings.)
All message file repositories are structured the same way. They are:
To create message files, you use the same django-admin.py makemessages tool as with the Django message files. You only need to be in the right place -- in the directory where either the conf/locale (in case of the source tree) or the locale/ (in case of app messages or project messages) directory are located. And you use the same django-admin.py compilemessages to produce the binary django.mo files that are used by gettext.
You can also run django-admin.py compilemessages --settings=path.to.settings to make the compiler process all the directories in your LOCALE_PATHS setting.
Application message files are a bit complicated to discover -- they need the LocaleMiddleware. If you don't use the middleware, only the Django message files and project message files will be processed.
Finally, you should give some thought to the structure of your translation files. If your applications need to be delivered to other users and will be used in other projects, you might want to use app-specific translations. But using app-specific translations and project translations could produce weird problems with makemessages: makemessages will traverse all directories below the current path and so might put message IDs into the project message file that are already in application message files.
The easiest way out is to store applications that are not part of the project (and so carry their own translations) outside the project tree. That way, django-admin.py makemessages on the project level will only translate strings that are connected to your explicit project and not strings that are distributed independently.
As a convenience, Django comes with a view, django.views.i18n.set_language, that sets a user's language preference and redirects back to the previous page.
Activate this view by adding the following line to your URLconf:
(r'^i18n/', include('django.conf.urls.i18n')),
(Note that this example makes the view available at /i18n/setlang/.)
The view expects to be called via the POST method, with a language parameter set in request. If session support is enabled, the view saves the language choice in the user's session. Otherwise, it saves the language choice in a cookie that is by default named django_language. (The name can be changed through the LANGUAGE_COOKIE_NAME setting.)
After setting the language choice, Django redirects the user, following this algorithm:
Here's example HTML template code:
<form action="/i18n/setlang/" method="post">
<input name="next" type="hidden" value="/next/page/" />
<select name="language">
{% for lang in LANGUAGES %}
<option value="{{ lang.0 }}">{{ lang.1 }}</option>
{% endfor %}
</select>
<input type="submit" value="Go" />
</form>
Adding translations to JavaScript poses some problems:
Django provides an integrated solution for these problems: It passes the translations into JavaScript, so you can call gettext, etc., from within JavaScript.
The main solution to these problems is the javascript_catalog view, which sends out a JavaScript code library with functions that mimic the gettext interface, plus an array of translation strings. Those translation strings are taken from the application, project or Django core, according to what you specify in either the info_dict or the URL.
You hook it up like this:
js_info_dict = {
'packages': ('your.app.package',),
}
urlpatterns = patterns('',
(r'^jsi18n/$', 'django.views.i18n.javascript_catalog', js_info_dict),
)
Each string in packages should be in Python dotted-package syntax (the same format as the strings in INSTALLED_APPS) and should refer to a package that contains a locale directory. If you specify multiple packages, all those catalogs are merged into one catalog. This is useful if you have JavaScript that uses strings from different applications.
You can make the view dynamic by putting the packages into the URL pattern:
urlpatterns = patterns('',
(r'^jsi18n/(?P<packages>\S+?)/$', 'django.views.i18n.javascript_catalog'),
)
With this, you specify the packages as a list of package names delimited by '+' signs in the URL. This is especially useful if your pages use code from different apps and this changes often and you don't want to pull in one big catalog file. As a security measure, these values can only be either django.conf or any package from the INSTALLED_APPS setting.
To use the catalog, just pull in the dynamically generated script like this:
<script type="text/javascript" src="{% url django.views.i18n.javascript_catalog %}"></script>
This uses reverse URL lookup to find the URL of the JavaScript catalog view. When the catalog is loaded, your JavaScript code can use the standard gettext interface to access it:
document.write(gettext('this is to be translated'));
There is also an ngettext interface:
var object_cnt = 1 // or 0, or 2, or 3, ...
s = ngettext('literal for the singular case',
'literal for the plural case', object_cnt);
and even a string interpolation function:
function interpolate(fmt, obj, named);
The interpolation syntax is borrowed from Python, so the interpolate function supports both positional and named interpolation:
Positional interpolation: obj contains a JavaScript Array object whose elements values are then sequentially interpolated in their corresponding fmt placeholders in the same order they appear. For example:
fmts = ngettext('There is %s object. Remaining: %s',
'There are %s objects. Remaining: %s', 11);
s = interpolate(fmts, [11, 20]);
// s is 'There are 11 objects. Remaining: 20'
Named interpolation: This mode is selected by passing the optional boolean named parameter as true. obj contains a JavaScript object or associative array. For example:
d = {
count: 10
total: 50
};
fmts = ngettext('Total: %(total)s, there is %(count)s object',
'there are %(count)s of a total of %(total)s objects', d.count);
s = interpolate(fmts, d, true);
You shouldn't go over the top with string interpolation, though: this is still JavaScript, so the code has to make repeated regular-expression substitutions. This isn't as fast as string interpolation in Python, so keep it to those cases where you really need it (for example, in conjunction with ngettext to produce proper pluralizations).
You create and update the translation catalogs the same way as the other
Django translation catalogs -- with the django-admin.py makemessages tool. The only difference is you need to provide a -d djangojs parameter, like this:
django-admin.py makemessages -d djangojs -l de
This would create or update the translation catalog for JavaScript for German. After updating translation catalogs, just run django-admin.py compilemessages the same way as you do with normal Django translation catalogs.
If you know gettext, you might note these specialties in the way Django does translation:
This is only needed for people who either want to extract message IDs or compile message files (.po). Translation work itself just involves editing existing files of this type, but if you want to create your own message files, or want to test or compile a changed message file, you will need the gettext utilities:
Download the following zip files from the GNOME servers http://ftp.gnome.org/pub/gnome/binaries/win32/dependencies/ or from one of its mirrors
X is the version number, we recomend using 0.15 or higher.
Extract the contents of the bin\ directories in both files to the same folder on your system (i.e. C:\Program Files\gettext-utils)
Update the system PATH:
You may also use gettext binaries you have obtained elsewhere, so long as the xgettext --version command works properly. Some version 0.14.4 binaries have been found to not support this command. Do not attempt to use Django translation utilities with a gettext package if the command xgettext --version entered at a Windows command prompt causes a popup window saying "xgettext.exe has generated errors and will be closed by Windows".
Sep 20, 2009